US009153209B2

a2z United States Patent (10) Patent No.: US 9,153,209 B2
Dmitriev (45) Date of Patent: Oct. 6, 2015
(54) METHOD AND SYSTEM FOR GENERATING OTHER PUBLICATIONS

A DISPLACEMENT MAP FROM A NORMAL
MAP

(75) Inventor: Kirill Dmitriev, Moscow (RU)

(73) Assignee: NVIDIA Corporation, Santa Clara, CA
(US)

(*) Notice: Subject to any disclaimer, the term of this

patent is extended or adjusted under 35

U.S.C. 154(b) by 455 days.

(21) Appl. No.: 13/568,038

(22) Filed: Aug. 6, 2012
(65) Prior Publication Data
US 2014/0035940 A1 Feb. 6, 2014
(51) Imt.ClL
G09G 5/00 (2006.01)
GO6T 17/00 (2006.01)
G09G 5/36 (2006.01)
GO6T 15/04 (2011.01)
(52) US.CL
CPC ..o G09G 5/363 (2013.01); GO6T 15/04

(2013.01); GO9G 2352/00 (2013.01); GO9G
2360/10 (2013.01)
(58) Field of Classification Search
None
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS

2005/0280648 Al* 12/2005 Wangetal. ..o 345/420
2012/0262457 Al1* 10/2012 Gautron et al. ... 345/426
2013/0265310 Al* 10/2013 Hirtzlinetal. 345/426

Policarpo, Fabio, Manuel M. Oliveira, and Jodo LD Comba. “Real-
time relief mapping on arbitrary polygonal surfaces.” Proceedings of
the 2005 symposium on Interactive 3D graphics and games. ACM,
2005.*

Donnelly, William. “Per-pixel displacement mapping with distance
functions.” GPU gems 2.22 (2005): 3.*

Wei, Tiangong, and Reinhard Klette. A new algorithm for gradient
field integration. CITR, The University of Auckland, New Zealand,
2001.*

Dmitriev, Kirill, and Evgeny Makarov. “Generating displacement
from normal map for use in 3D games.” ACM Siggraph 2011 Talks.
ACM, Aug. 7-11, 2011.*

* cited by examiner

Primary Examiner — Ryan R Yang
Assistant Examiner — Sultana M Zalalee
(74) Attorney, Agent, or Firm — Artegis Law Group, LLP

(57) ABSTRACT

One embodiment of the present invention sets forth a tech-
nique for generating a displacement map. The technique
involves receiving a normal map which includes one or more
normal vectors associated with a texture map, processing the
one or more normal vectors to a calculate one or more depth
difference vectors associated with the texture map, and gen-
erating one or more rays associated with a first texel of the
texture map. The technique further involves calculating, for
each of the one or more rays, relative depths of each ofthe one
or more other texels traversed by the ray based on each of the
depth difference vectors that correspond with the one or more
other texels traversed by the ray, determining a displacement
value associated with the first texel based on the relative
depths calculated for the one or more rays, and storing the
displacement value in a displacement map.

20 Claims, 6 Drawing Sheets

400

il

Receive Normal Map
410

i

| Procass Normal Map to genarate Depth Difference Map (DDM)
412 }‘

l

Select a sample point on the DDM
414

!

| Generate J rays associated with the sample point ‘

I

For each ray in the J rays, integrate the DDM to dstermins the relative depth of sach
taxel traversed by the ray

!

| Determine an average relative depth of the texels traversed by the J rays ‘
420

!

Determine a displacement for the sample point based on the average relative depth
422

!

| of sample pointin map ‘

U.S. Patent

Oct. 6, 2015

System Memory 104

Device Driver
103

Sheet 1 of 6 US 9,153,209 B2
Norr;;lz Map c;;ns'::'t:r

Displacement

Displacement

e

CPU

Communication

Path \

108

Map Engine Map
130 134
Communication Path 113
Parallel Processing
Memory Submtem
Bridge
105
Display
Device

Input Devices

108

System Disk 1/0 Bridge
114 107
Add-In Card Switch Add-In Card
120 116 121
Network
Adapter
118

Figure 1

U.S. Patent

US 9,153,209 B2

Oct. 6, 2015 Sheet 2 of 6
Parallel Processing
Memory Bridge | communication Subsystem
105 Path v M2
113
PPU 202(0)
1o
Unit Host Interface 206
205
Front End 212
Task/Work Unit 207
Processing Cluster Array 230
GPC || GPC GPC
208(0) 208(1) " | 208(C-1)
*DI Crossbar Unit 210
T
Memoryllnterface 214
Partition | | Partition Partition
Unit Unit |---| Unit
215(0) 215(1) 215(D-1)
DRAM DRAM DRAM
220(0) 220(1) 220(D-1)
PP Memory 204(0)
PPU PP Memory
202(1) 204(1)
PPU PP Memory
202(U-1) 204(U-1)

Figure 2

U.S. Patent Oct. 6, 2015 Sheet 3 of 6 US 9,153,209 B2

L~ 132
a0 -
A
Displacement Map Engine
130
A
I~ 134
330" ol
Figure 3A
310 320 330
Texel N.x 312 Texel _N.DDM.x 322 Texel_N.Disp 332 |
Texel N.y 314 Texel _N.DDM.y 324

Texel N.z316

Figure 3B Figure 3C Figure 3D

U.S. Patent Oct. 6, 2015 Sheet 4 of 6 US 9,153,209 B2

400

ol

Receive Normal Map
410

!

Process Normal Map to generate Depth Difference Map (DDM)
412

A

A

Select a sample point on the DDM
414

v

Generate J rays associated with the sample point
416

'

For each ray in the J rays, integrate the DDM to determine the relative depth of each
texel traversed by the ray
418

v

Determine an average relative depth of the texels traversed by the J rays
420

v

Determine a displacement for the sample point based on the average relative depth
422

!

Store displacement of sample point in displacement map
424

More sample points? Yes

426

Figure 4

U.S. Patent Oct. 6, 2015 Sheet 5 of 6 US 9,153,209 B2

g o | 1a2
510(‘])/'\// T \
I, \ i 1/-’\\
3107 1 ! 510(0)
\\ / \<_y 1
g NI\
FIGURE 5A
521
523
310
_;
522 524
FIGURE 5B
A
L
t B
dy)
dx
522 523 524

FIGURE 5C

U.S. Patent Oct. 6, 2015 Sheet 6 of 6 US 9,153,209 B2

CONCEPTUAL
DIAGRAM

Instruction Stream
and Parameters
|

Graphics ‘
Processing Data Assembler
Pipeline 610
600 1
Vertex Processing Unit
615

I

Primitive Assembler

620

I

Geometry Processing Unit

625

Viewport Scale, Cull,
and Clip Unit
650

|

Rasterizer

655

I

Memory Fragment Processing Unit
Interface * 660

214 l

Raster Operations Unit
665

Figure 6

US 9,153,209 B2

1
METHOD AND SYSTEM FOR GENERATING
A DISPLACEMENT MAP FROM A NORMAL
MAP

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention generally relates to computer graph-
ics, and, more specifically, to a method and system for gen-
erating a displacement map from a normal map.

2. Description of the Related Art

Conventionally, graphics processing systems have relied
on techniques such as bump mapping to produce realistic
lighting effects in computer-generated images. In bump map-
ping, the surface normals of a polygon mesh are calculated
and stored in a normal map. During rendering, the normal
map is used to perform lighting calculations, which are
applied to a lower-resolution version of the polygon mesh. In
this way, geometric details present on the original polygon
mesh can be simulated and applied to a lower-resolution
polygon mesh in order to conserve computational resources.
Although bump mapping is capable of simulating the lighting
of the original object, the underlying geometry of the lower-
resolution object is unchanged. Consequently, bump map-
ping cannot accurately produce silhouettes, occlusion, and
shadows, revealing the coarseness of the object’s underlying
geometry.

As the processing power of graphics systems increases, it
has become possible to render images having higher and
higher polygon counts. Accordingly, current graphics appli-
cation programming interfaces (APIs) (e.g., DirectX 11) have
begun to implement functions that enable more sophisticated
control over geometry shaders, such as the ability to perform
tessellation of incoming graphics primitives. Through tessel-
lation, developers have the ability to increase the geometric
detail of an object by generating additional graphics primi-
tives and displacing the vertices of those primitives to more
realistically reproduce the geometric details of the object.
However, as discussed above, many existing graphic assets
were designed to be used with techniques (e.g., bump map-
ping) that do not affect object geometries and were not
designed or intended to be used with tessellation. Conse-
quently, existing graphic assets typically lack the geometric
information (e.g., depth information) needed to generate real-
istic and detailed object geometries with the additional verti-
ces created during tessellation. Moreover, the process of con-
verting existing graphic assets to take advantage of
tessellation, as well as other sophisticated geometric process-
ing techniques included in current graphics APIs, is time-
consuming and expensive. Thus, given the financial risks and
uncertain return on investment, few developers are willing to
expend the resources necessary to update existing graphic
assets to include the required geometric information.

Accordingly, what is needed in the art is an approach that
allows existing graphic assets to be used in conjunction with
the functions of more advanced graphics APIs that enable
more sophisticated control over object geometries.

SUMMARY OF THE INVENTION

One embodiment of the present invention sets forth a
method for generating a displacement map. The method
involves receiving a normal map which includes one or more
normal vectors associated with a texture map, processing the
one or more normal vectors to a calculate one or more depth
difference vectors associated with the texture map, and gen-
erating one or more rays associated with a first texel of the

10

15

20

25

30

35

40

45

50

55

60

65

2

texture map, where each of the one or more rays associated
with the first texel traverses one or more other texels of the
texture map. The method further involves calculating, for
each of the one or more rays associated with the first texel,
relative depths of each of the one or more other texels tra-
versed by the ray based on each of the depth difference
vectors that correspond with the one or more other texels
traversed by the ray, determining a displacement value asso-
ciated with the first texel based on the relative depths calcu-
lated for the one or more rays, and storing the displacement
value in a displacement map.

Further embodiments provide a non-transitory computer-
readable medium and a computing device to carry out the
method set forth above.

One advantage of the disclosed technique is that the normal
maps of existing graphic assets can be quickly and inexpen-
sively converted into displacement maps, enabling existing
graphic assets to be used in systems capable of performing
tessellation of incoming geometries and displacing the verti-
ces of the resulting graphic primitives to generate more
detailed geometric features.

BRIEF DESCRIPTION OF THE DRAWINGS

So that the manner in which the above recited features of
the invention can be understood in detail, a more particular
description of the invention, briefly summarized above, may
be had by reference to embodiments, some of which are
illustrated in the appended drawings. It is to be noted, how-
ever, that the appended drawings illustrate only typical
embodiments of this invention and are therefore not to be
considered limiting of its scope, for the invention may admit
to other equally effective embodiments.

FIG. 1 is a block diagram illustrating a computer system
configured to implement one or more aspects of the present
invention;

FIG. 2 illustrates a parallel processing subsystem, accord-
ing to one embodiment of the present invention;

FIGS. 3A-3D illustrate the operation of a displacement
map engine, according to one embodiment of the present
invention;

FIG. 4 is a flow diagram of methods steps for generating a
displacement map from a normal map, according to one
embodiment of the present invention;

FIGS. 5A-5C illustrate a technique for generating a dis-
placement map from a normal map, according to one embodi-
ment of the present invention; and

FIG. 6 is a conceptual diagram of a graphics processing
pipeline, that one or more of the PPUs of FIG. 2 can be
configured to implement, according to one embodiment of the
present invention.

DETAILED DESCRIPTION

In the following description, numerous specific details are
set forth to provide a more thorough understanding of the
present invention. However, it will be apparent to one of skill
in the art that the present invention may be practiced without
one or more of these specific details.

System Overview

FIG. 1 is a block diagram illustrating a computer system
100 configured to implement one or more aspects of the
present invention. Computer system 100 includes a central
processing unit (CPU) 102 and a system memory 104 com-
municating via an interconnection path that may include a

US 9,153,209 B2

3

memory bridge 105. The system memory 104 may be con-
figured to store a device driver 103, a displacement map
engine 130, a normal map 132, and a displacement map 134.
The CPU 102 may be configured to execute the displacement
map engine 130 to process a normal map 132 and generate a
displacement map 134. Memory bridge 105, which may be,
e.g., a Northbridge chip, is connected via a bus or other
communication path 106 (e.g., a HyperTransport link) to an
1/O (input/output) bridge 107. /O bridge 107, which may be,
e.g., a Southbridge chip, receives user input from one or more
user input devices 108 (e.g., keyboard, mouse) and forwards
the input to CPU 102 via communication path 106 and
memory bridge 105. A parallel processing subsystem 112 is
coupled to memory bridge 105 via a bus or second commu-
nication path 113 (e.g., a Peripheral Component Interconnect
(PCI) Express, Accelerated Graphics Port, or HyperTransport
link); in one embodiment parallel processing subsystem 112
is a graphics subsystem that delivers pixels to a display device
110 that may be any conventional cathode ray tube, liquid
crystal display, light-emitting diode display, or the like. A
system disk 114 is also connected to /O bridge 107 and may
be configured to store content and applications and data for
use by CPU 102 and parallel processing subsystem 112.
System disk 114 provides non-volatile storage for applica-
tions and data and may include fixed or removable hard disk
drives, flash memory devices, and CD-ROM (compact disc
read-only-memory), DVD-ROM (digital versatile disc-
ROM), Blu-ray, HD-DVD (high definition DVD), or other
magnetic, optical, or solid state storage devices.

A switch 116 provides connections between /O bridge 107
and other components such as a network adapter 118 and
various add-in cards 120 and 121. Other components (not
explicitly shown), including universal serial bus (USB) or
other port connections, compact disc (CD) drives, digital
versatile disc (DVD) drives, film recording devices, and the
like, may also be connected to /O bridge 107. The various
communication paths shown in FIG. 1, including the specifi-
cally named communication paths 106 and 113 may be
implemented using any suitable protocols, such as PCI
Express, AGP (Accelerated Graphics Port), HyperTransport,
orany other bus or point-to-point communication protocol(s),
and connections between different devices may use different
protocols as is known in the art.

In one embodiment, the parallel processing subsystem 112
incorporates circuitry optimized for graphics and video pro-
cessing, including, for example, video output circuitry, and
constitutes a graphics processing unit (GPU). In another
embodiment, the parallel processing subsystem 112 incorpo-
rates circuitry optimized for general purpose processing,
while preserving the underlying computational architecture,
described in greater detail herein. In yet another embodiment,
the parallel processing subsystem 112 may be integrated with
one or more other system elements in a single subsystem,
such as joining the memory bridge 105, CPU 102, and 1/0
bridge 107 to form a system-on-chip (SoC).

It will be appreciated that the system shown herein is
illustrative and that variations and modifications are possible.
The connection topology, including the number and arrange-
ment of bridges, the number of CPUs 102, and the number of
parallel processing subsystems 112, may be modified as
desired. For instance, in some embodiments, system memory
104 is connected to CPU 102 directly rather than through a
bridge, and other devices communicate with system memory
104 via memory bridge 105 and CPU 102. In other alternative
topologies, parallel processing subsystem 112 is connected to
1/0O bridge 107 or directly to CPU 102, rather than to memory
bridge 105. In still other embodiments, I/O bridge 107 and

10

15

20

25

30

35

40

45

50

55

60

65

4

memory bridge 105 might be integrated into a single chip
instead of existing as one or more discrete devices. Large
embodiments may include two or more CPUs 102 and two or
more parallel processing subsystems 112. The particular
components shown herein are optional; for instance, any
number of add-in cards or peripheral devices might be sup-
ported. In some embodiments, switch 116 is eliminated, and
network adapter 118 and add-in cards 120, 121 connect
directly to I/O bridge 107.

FIG. 2 illustrates a parallel processing subsystem 112,
according to one embodiment of the present invention. As
shown, parallel processing subsystem 112 includes one or
more parallel processing units (PPUs) 202, each of which is
coupled to a local parallel processing (PP) memory 204. In
general, a parallel processing subsystem includes a number U
of PPUs, where Uz1. (Herein, multiple instances of like
objects are denoted with reference numbers identifying the
object and parenthetical numbers identifying the instance
where needed.) PPUs 202 and parallel processing memories
204 may be implemented using one or more integrated circuit
devices, such as programmable processors, application spe-
cific integrated circuits (ASICs), memory devices, or in any
other technically feasible fashion.

Referring again to FIG. 1 as well as FIG. 2, in some
embodiments, some or all of PPUs 202 in parallel processing
subsystem 112 are graphics processors with rendering pipe-
lines that can be configured to perform various operations
related to generating pixel data from graphics data supplied
by CPU 102 and/or system memory 104 via memory bridge
105 and the second communication path 113, interacting with
local parallel processing memory 204 (which can be used as
graphics memory including, e.g., a conventional frame
buffer) to store and update pixel data, delivering pixel data to
display device 110, and the like. In some embodiments, par-
allel processing subsystem 112 may include one or more
PPUs 202 that operate as graphics processors and one or more
other PPUs 202 that are used for general-purpose computa-
tions. The PPUs may be identical or different, and each PPU
may have a dedicated parallel processing memory device(s)
orno dedicated parallel processing memory device(s). One or
more PPUs 202 in parallel processing subsystem 112 may
output data to display device 110 or each PPU 202 in parallel
processing subsystem 112 may output data to one or more
display devices 110.

In operation, CPU 102 is the master processor of computer
system 100, controlling and coordinating operations of other
system components. In particular, CPU 102 issues commands
that control the operation of PPUs 202. In some embodi-
ments, CPU 102 writes a stream of commands for each PPU
202 to a data structure (not explicitly shown in either FIG. 1
or FIG. 2) that may be located in system memory 104, parallel
processing memory 204, or another storage location acces-
sible to both CPU 102 and PPU 202. A pointer to each data
structure is written to a pushbuffer to initiate processing of the
stream of commands in the data structure. The PPU 202 reads
command streams from one or more pushbuffers and then
executes commands asynchronously relative to the operation
of CPU 102. Execution priorities may be specified for each
pushbuffer by an application program via the device driver
103 to control scheduling of the different pushbuffers.

Referring back now to FIG. 2 as well as FIG. 1, each PPU
202 includes an /O (input/output) unit 205 that communi-
cates with the rest of computer system 100 via communica-
tion path 113, which connects to memory bridge 105 (or, in
one alternative embodiment, directly to CPU 102). The con-
nection of PPU 202 to the rest of computer system 100 may
also be varied. In some embodiments, parallel processing

US 9,153,209 B2

5

subsystem 112 is implemented as an add-in card that can be
inserted into an expansion slot of computer system 100. In
other embodiments, a PPU 202 can be integrated on a single
chip with a bus bridge, such as memory bridge 105 or /O
bridge 107. In still other embodiments, some or all elements
of PPU 202 may be integrated on a single chip with CPU 102.

In one embodiment, communication path 113 is a PCI
Express link, in which dedicated lanes are allocated to each
PPU 202, as is known in the art. Other communication paths
may also be used. An I/O unit 205 generates packets (or other
signals) for transmission on communication path 113 and
also receives all incoming packets (or other signals) from
communication path 113, directing the incoming packets to
appropriate components of PPU 202. For example, com-
mands related to processing tasks may be directed to a host
interface 206, while commands related to memory operations
(e.g., reading from or writing to parallel processing memory
204) may be directed to a memory crossbar unit 210. Host
interface 206 reads each pushbuffer and outputs the command
stream stored in the pushbuffer to a front end 212.

Each PPU 202 advantageously implements a highly paral-
lel processing architecture. As shown in detail, PPU 202(0)
includes a processing cluster array 230 that includes a number
C of general processing clusters (GPCs) 208, where C=z1.
Each GPC 208 is capable of executing a large number (e.g.,
hundreds or thousands) of threads concurrently, where each
thread is an instance of a program. In various applications,
different GPCs 208 may be allocated for processing different
types of programs or for performing different types of com-
putations. The allocation of GPCs 208 may vary dependent on
the workload arising for each type of program or computa-
tion.

GPCs 208 receive processing tasks to be executed from a
work distribution unit within a task/work unit 207. The work
distribution unit receives pointers to processing tasks that are
encoded as task metadata (TMD) and stored in memory. The
pointers to TMDs are included in the command stream that is
stored as a pushbuffer and received by the front end unit 212
from the host interface 206. Processing tasks that may be
encoded as TMDs include indices of data to be processed, as
well as state parameters and commands defining how the data
is to be processed (e.g., what program is to be executed). The
task/work unit 207 receives tasks from the front end 212 and
ensures that GPCs 208 are configured to a valid state before
the processing specified by each one of the TMDs is initiated.
A priority may be specified for each TMD that is used to
schedule execution of the processing task. Optionally, the
TMD can include a parameter that controls whether the TMD
is added to the head or the tail for a list of processing tasks (or
list of pointers to the processing tasks), thereby providing
another level of control over priority.

Memory interface 214 includes a number D of partition
units 215 that are each directly coupled to a portion of parallel
processing memory 204, where D=z1. As shown, the number
of partition units 215 generally equals the number of dynamic
random access memory (DRAM) 220. In other embodiments,
the number of partition units 215 may not equal the number of
memory devices. Persons of ordinary skill in the art will
appreciate that DRAM 220 may be replaced with other suit-
able storage devices and can be of generally conventional
design. A detailed description is therefore omitted. Render
targets, such as frame buffers or texture maps may be stored
across DRAMs 220, allowing partition units 215 to write
portions of each render target in parallel to efficiently use the
available bandwidth of parallel processing memory 204.

Any one of GPCs 208 may process data to be written to any
of the DRAMSs 220 within parallel processing memory 204.

10

15

20

25

30

35

40

45

50

55

60

65

6

Crossbar unit 210 is configured to route the output of each
GPC 208 to the input of any partition unit 215 or to another
GPC 208 for further processing. GPCs 208 communicate
with memory interface 214 through crossbar unit 210 to read
from or write to various external memory devices. In one
embodiment, crossbar unit 210 has a connection to memory
interface 214 to communicate with I/O unit 205, as well as a
connection to local parallel processing memory 204, thereby
enabling the processing cores within the different GPCs 208
to communicate with system memory 104 or other memory
thatis notlocal to PPU 202. In the embodiment shown in FIG.
2, crossbar unit 210 is directly connected with I/O unit 205.
Crossbar unit 210 may use virtual channels to separate traffic
streams between the GPCs 208 and partition units 215.

Again, GPCs 208 can be programmed to execute process-
ing tasks relating to a wide variety of applications, including
but not limited to, linear and nonlinear data transforms, fil-
tering of video and/or audio data, modeling operations (e.g.,
applying laws of physics to determine position, velocity and
other attributes of objects), image rendering operations (e.g.,
tessellation shader, vertex shader, geometry shader, and/or
pixel shader programs), and so on. PPUs 202 may transfer
data from system memory 104 and/or local parallel process-
ing memories 204 into internal (on-chip) memory, process the
data, and write result data back to system memory 104 and/or
local parallel processing memories 204, where such data can
be accessed by other system components, including CPU 102
or another parallel processing subsystem 112.

A PPU 202 may be provided with any amount of local
parallel processing memory 204, including no local memory,
and may use local memory and system memory in any com-
bination. For instance, a PPU 202 can be a graphics processor
in a unified memory architecture (UMA) embodiment. In
such embodiments, little or no dedicated graphics (parallel
processing) memory would be provided, and PPU 202 would
use system memory 104 exclusively or almost exclusively. In
UMA embodiments, a PPU 202 may be integrated into a
bridge chip or processor chip or provided as a discrete chip
with a high-speed link (e.g., PCI Express) connecting the
PPU 202 to system memory via a bridge chip or other com-
munication means.

As noted above, any number of PPUs 202 can be included
in a parallel processing subsystem 112. For instance, multiple
PPUs 202 can be provided on a single add-in card, or multiple
add-in cards can be connected to communication path 113, or
one or more of PPUs 202 can be integrated into a bridge chip.
PPUs 202 in a multi-PPU system may be identical to or
different from one another. For instance, different PPUs 202
might have different numbers of processing cores, different
amounts of local parallel processing memory, and so on.
Where multiple PPUs 202 are present, those PPUs may be
operated in parallel to process data at a higher throughput than
is possible with a single PPU 202. Systems incorporating one
or more PPUs 202 may be implemented in a variety of con-
figurations and form factors, including desktop, laptop, or
handheld personal computers, smart phones, servers, work-
stations, game consoles, embedded systems, and the like.

Generating a Displacement Map from a Normal Map

FIGS. 3A-3D illustrate the operation of a displacement
map engine 130, according to one embodiment of the present
invention. As shown, the displacement map engine 130
accepts a normal map 132 as an input and generates a dis-
placement map 134 as an output. The displacement map 134
includes a plurality of displacement values, each displace-
ment value indicating the distance that a vertex associated

US 9,153,209 B2

7

with a given texel location should be displaced. The normal
map 132 includes a plurality of normal values, each normal
value indicating a surface orientation associated with a texel
location. The normal map 132 is associated with a corre-
sponding texture map (not shown) that includes color infor-
mation for an image (i.e., a texture) to be applied to the
surface of a primitive when rendering the primitive to gener-
ate an image for display.

For example, as shown in FIG. 3B, sample point 310 on the
normal map 132 corresponds to a texel of a texture map and
contains a vector, specified as Texel_N.x 312, Texel_N.y 314,
and Texel_N.z 316, indicating the orientation of a theoretical
surface of the texel. The vector represents the normal vector
of the theoretical surface corresponding to the texel. In con-
ventional rendering operations, PPU 202 receives one or
more primitives (e.g., a triangle, quad, etc.), which are pro-
cessed to generate pixel data for display on display device
110. The vertices of the primitive include vertex attributes
such as position information, color information, texture coor-
dinate information and the like. Texture coordinates enable
PPU 202 to map additional color information stored in the
texture map onto the surface of the primitive rather than
calculating the color for each pixel of the primitive by inter-
polating between color attributes stored in the vertices of the
primitive. In some rendering algorithms (e.g., bump-map-
ping), the normal vectors associated with each texel in a
texture map are used to perform lighting calculations across a
primitive to vary the brightness of each pixel associated with
the primitive based on the orientation of the surface with a
light source. Although the exemplary normal and displace-
ment maps 132, 134 shown in FIG. 3A include sample points
310,330 on a per texel basis, persons skilled in the art will
understand that these maps can be configured to include
samples having different levels of granularity (e.g., texel,
sub-texel, etc.). In other words, normal and displacement
maps 132, 134 may have more than one, or less than one,
sample point for each corresponding texel of the texture map.

Vector information (e.g., 312, 314, 316) may be stored in
the normal map 132 in any format useful for performing
lighting computations. In one embodiment, each of the N
sample points of normal map 132 includes X, Y, and Z com-
ponents specified in a format such as [-1, 0, 1]. In another
embodiment, the same vector may be specified using 8-bit
values, such as [0, 128, 255]. In the latter embodiment, each
normal vector may be conveniently stored as an RGB color
value in a texture map.

During processing of the normal map 132, the CPU 102
may execute the displacement map engine 130 to compute,
for each texel of the corresponding texture map, the change in
depth when traversing the texel in a particular direction. More
specifically, because the texel size is known, and because the
normal map includes a vector indicating the orientation of a
theoretical surface of each texel, basic trigonometric func-
tions and vector multiplication can be used to determine the
change in depth when traversing the texel in the x direction
322 and the change in depth when traversing the texel in the
y direction 324. These intermediate values, shown in FIG. 3C,
may optionally be stored to a depth difference map (DDM)
136 in system memory 104, or the intermediate values may be
computed on the fly. In one embodiment, a sample point 320
on the DDM 136 corresponds to a texel of a texture map, as
well as a sample point 310 on the normal map 132, and
contains a two-component vector, specified as Texel _N.D-
DM_x 322 and Texel_N.DDM_y 324, indicating the rate of
change of height across the texel in an x dimension and the
rate of change of height across a texel in a y dimension. The

15

30

40

45

8

DDM may be, for example, a texture map which stores float-
ing-point values (e.g., Float2).

Finally, the displacement map engine 130 may generate a
displacement map 134 by integrating across one or more rays
based on the depth difference vectors (e.g, 322, 324) stored in
the DDM 136 to find a displacement associated with a texel of
the texture map. In one embodiment, discussed in further
detail in conjunction with FIGS. 4 and 5A-5C, the DDM 136
may be integrated over multiple rays originating from the
same texel, in a plurality of directions, and the integration
results may be averaged to compute a relative displacement of
the sample point 330. The computed displacement value 332
corresponding to a particular sample point 330 may be stored
in the displacement map 134 in system memory 104. Thus,
the displacement map engine 130 is capable of receiving a
normal map 132 and generating a displacement map 134,
allowing displacement information to be efficiently generated
for existing graphic assets. The displacement map engine 130
may be used offline to prepare displacement maps 134 for
existing graphic assets, or the displacement map engine 130
may be used to generate displacement maps in real-time
during the execution of graphics software.

FIG. 4 is a flow diagram of methods steps for generating a
displacement map from a normal map, according to one
embodiment of the present invention. Although the method
steps are described in conjunction with FIGS. 1-3 and 5A-5C,
persons skilled in the art will understand that any system
configured to perform the method steps, in any order, falls
within the scope of the present invention.

The method begins at step 410, where the CPU 102
executes the displacement map engine 130 that receives a
normal map 132 from the system memory 104. The normal
map 132 includes a plurality of normal vectors associated
with a plurality of texels of a corresponding texture map, with
each normal vector indicating a surface orientation associated
with a particular texel of the texture map. At step 412, the
displacement map engine 130 processes the normal map 132
to generate a depth difference map (DDM) 136 associate with
the texture map. As discussed above, the DDM 136 may be
generated with basic trigonometric functions based on the
size of the texel and orientation of the theoretical surface of
the texel. The values stored in the DDM 136 may include an
X channel, indicating the rate of change of height when
traversing a texel in an x dimension, and a'Y channel, indi-
cating the rate of change of height when traversing a texel in
an y dimension.

Next, at step 414, once the DDM 136 has been generated,
asample point 330 in the displacement map 134 is selected, as
shown in FIGS. 5A and 5B. In the current embodiment, each
sample point 330 of displacement map 134 corresponds to a
texel location 520 in the corresponding texture map 500.
However, persons skilled in the art will understand that the
displacement map 134 can be configured to include samples
having any level of granularity (e.g., texel, sub-texel, etc.). At
step 416, a plurality of J rays 510 associated with the texel are
generated. The J rays 510 may share a common starting point
within the texel, such as a center, edge, interior, or exterior of
a texel, that corresponds with the sample point 330 of the
displacement map 134. Alternatively, the J rays 510 may have
one or more different starting points within the texel. Because
the normal vectors from which the DDM 136 is computed are
inexact values—often stored in low precision—which do not
contain information regarding discontinuities in surface ori-
entation between adjacent texels, the displacement value
computed for a particular sample point based on these normal
vectors may be inaccurate. Consequently, to compensate for
these inaccuracies, displacement values 332 may be com-

US 9,153,209 B2

9

puted independently for each texel by uniformly distributing
the J rays 510 over 360 degrees and computing an average
displacement across multiple texels in multiple directions.
For texel locations at or near the edge of the texture map, the
J rays 510 may distributed using a partial circle (i.e., less than
360 degrees).

Any number of rays extending across any number of texels
may be generated. In general, 500 rays having a radius of
approximately 250 texels is sufficient for any given texture.
However, to conserve computational resources, approxi-
mately 5-50 rays extending across 10-100 texels may be
generated for each texel in a texture map. The embodiment
shown FIG. 5A, provided for illustrative purposes, includes
ten rays 510, each of which share a common starting point at
the center of a texel 520 of a texture map 500 which corre-
sponds with normal map 132, DDM 136, and displacement
map 134. Additionally, the rays 510 are relatively evenly
distributed over 360 degrees, and each ray 510 traverses
approximately three to five texels.

Atstep 418, for each ray in the J rays, the displacement map
engine 130 integrates over the ray to determine the depth
associated with each of the texels traversed by the ray 510
relative to the depth associated with the starting point of the
ray 510. Integration may be performed in any useful coordi-
nate system (Cartesian coordinates, polar coordinates, etc.).
As shown in FIG. 5B, a ray 510 may cross near the middle of
a texel, or a ray 510 may cross near the edge of a texel.
Consequently, the degree to which each texel contributes to
the computed depth may vary. The contribution of each texel
may be computed from Equation 1, as illustrated in FIG. 5C,
where height(A) is the height relative to the starting point of
the ray 510 when entering the texel, DDM(x) is the rate of
change of height when traversing a texel in an x dimension,
DDM(y) is the change in depth when crossing the texel in the
vertical direction, dx is the magnitude of the interval over
which the ray 510 traverses the texel in the X direction, and dy
is the magnitude of the interval over which the ray 510
traverses the texel in the Y direction. For example, a value of
-1.5 for DDM(x) indicates that, when traversing the texel in
the horizontal direction, the height decreases by 1.5 units
across the width of the texel, while a value of 0.5 for DDM(y)
indicates that, when traversing the texel in the vertical direc-
tion, the height increases by 0.5 units across the height of the
texel. In the example provided in FIG. 5C, dx has a value of
1.0, and dy has a value of approximately 0.4. Moreover, as an
additional example, were the ray 510 to traverse a texel in a
purely vertical direction, dx would have a value of 0, and dy
would have a value of 1.0.

depth(B)=depth(4)+DDM(x,y)*(dx,dy) (Eq. 1)

At step 420, the relative depths associated with each of the
texels traversed by the J rays are averaged. Additionally,
weighting values may be assigned to particular texels tra-
versed by the rays 510. In one example, a texel which is
traversed by multiple rays 510 (e.g., a texel near the starting
point) may be weighted such that it does not disproportion-
ately contribute to the average relative depth of the texels
traversed by the rays. At step 422, a displacement value for the
starting texel is determined based on the average depth asso-
ciated with the texels traversed by the J rays. In order to
maintain substantially the same average height of an object
(onto which the displacement values are to be mapped), the
displacement values recorded for the texel may be computed
by offsetting the sample point 330 by the computed average
depth. For instance, if an average depth of +3.0 units is cal-
culated for the texels traversed by the J rays, a displacement
value of =3.0 units may be recorded for the sample point 330.

20

30

40

45

50

10

This zero average depth approach enables object vertices to
be displaced without significantly increasing the size the
object itself. In other embodiments, the displacement value
may be determined by further comparing the average depth to
the average depth(s) calculated for nearby texel(s), and/or by
applying one or more weighting or smoothing algorithms to
the displacement values.

Finally, in step 424, the displacement value for the sample
point 330 is stored in a displacement map 134 in the system
memory 104. In step 426, the displacement map engine 130
determines whether to calculate displacement values for
additional sample points. If there are additional sample points
to calculate, then method 400 returns to step 412. However, if
there are no additional sample points to calculate, then
method 400 terminates.

Graphics Pipeline Architecture

FIG. 6 is a conceptual diagram of a graphics processing
pipeline 600, that one or more of the PPUs 202 of FIG. 2 can
be configured to implement, according to one embodiment of
the present invention. For example, one of the GPCs 208 may
be configured to perform the functions of one or more of a
vertex processing unit 615, a geometry processing unit 625,
and a fragment processing unit 660. The functions of data
assembler 610, primitive assembler 620, rasterizer 655, and
raster operations unit 665 may also be performed by other
processing engines within a GPC 208 and a corresponding
partition unit 215. Alternately, graphics processing pipeline
600 may be implemented using dedicated processing units for
one or more functions.

Data assembler 610 collects vertex data for high-order
surfaces, primitives, and the like, and outputs the vertex data,
including the vertex attributes, to vertex processing unit 615.
Vertex processing unit 615 is a programmable execution unit
that is configured to execute vertex shader programs, lighting
and transforming vertex data as specified by the vertex shader
programs. For example, vertex processing unit 615 may be
programmed to transform the vertex data from an object-
based coordinate representation (object space) to an alterna-
tively based coordinate system such as world space or nor-
malized device coordinates (NDC) space. Vertex processing
unit 615 may read data that is stored in a GPC 208 cache,
parallel processing memory 204, or system memory 104 by
data assembler 610 for use in processing the vertex data.

Primitive assembler 620 receives vertex attributes from
vertex processing unit 615, reading stored vertex attributes, as
needed, and constructs graphics primitives for processing by
geometry processing unit 625. Graphics primitives include
triangles, line segments, points, and the like. Geometry pro-
cessing unit 625 is a programmable execution unit that is
configured to execute geometry shader programs, transform-
ing graphics primitives received from primitive assembler
620 as specified by the geometry shader programs. For
example, geometry processing unit 625 may be programmed
to perform tessellation of incoming graphics primitives to
subdivide the graphics primitives into one or more new graph-
ics primitives. A displacement map (e.g., displacement map
134) may then be applied to the vertices of the new graphics
primitives generated during tessellation to displace the verti-
ces and increase the geometrical detail and realism of objects
within the scene. Additionally, the geometry processing unit
625 may be programmed to calculate parameters, such as
plane equation coefficients, that are used to rasterize the new
graphics primitives.

In some embodiments, geometry processing unit 625 may
also add or delete elements in the geometry stream. Geometry

US 9,153,209 B2

11

processing unit 625 outputs the parameters and vertices
specifying new graphics primitives to a viewport scale, cull,
and clip unit 650. Geometry processing unit 625 may read
data that is stored in parallel processing memory 204 or
system memory 104 for use in processing the geometry data.
Viewport scale, cull, and clip unit 650 performs clipping,
culling, and viewport scaling and outputs processed graphics
primitives to a rasterizer 655.

Rasterizer 655 scan converts the new graphics primitives
and outputs fragments and coverage data to fragment process-
ing unit 660. Additionally, rasterizer 655 may be configured
to perform z culling and other z-based optimizations.

Fragment processing unit 660 is a programmable execu-
tion unit that is configured to execute fragment shader pro-
grams, transforming fragments received from rasterizer 655,
as specified by the fragment shader programs. For example,
fragment processing unit 660 may be programmed to perform
operations such as perspective correction, texture mapping,
shading, blending, and the like, to produce shaded fragments
that are output to raster operations unit 665. Fragment pro-
cessing unit 660 may read data that is stored in parallel pro-
cessing memory 204 or system memory 104 for use in pro-
cessing the fragment data. Fragments may be shaded at pixel,
sample, or other granularity, depending on the programmed
sampling rate.

Raster operations unit 665 is a processing unit that per-
forms raster operations, such as stencil, z test, blending, and
the like, and outputs pixel data as processed graphics data for
storage in graphics memory. The processed graphics data
may be stored in graphics memory, e.g., parallel processing
memory 204, and/or system memory 104, for display on
display device 110 or for further processing by CPU 102 or
parallel processing subsystem 112. In some embodiments of
the present invention, raster operations unit 665 is configured
to compress z or color data that is written to memory and
decompress z or color data that is read from memory.

In sum, a displacement map engine converts a normal map
into a depth difference map (DDM), which includes an X
channel indicating the change in depth when traversing a texel
in a horizontal direction and a Y channel indicating the
change in depth when traversing the texel in a vertical direc-
tion. The displacement map engine then generates a displace-
ment map from the DDM by integrating across the DDM
from each sample position in both angular and radial direc-
tions over a selected radius length and a selected range of
angles. The resulting displacement values are then used to
perform displacement mapping on one or more tessellated
surfaces of an object to create more realistic and detailed
object geometries.

One advantage of the disclosed technique is that the normal
maps of existing graphic assets can be quickly and inexpen-
sively converted into displacement maps, enabling existing
assets to be used in systems capable of performing tessella-
tion of incoming geometries and displacing the vertices of the
resulting graphic primitives to generate more detailed geo-
metric features.

One embodiment of the invention may be implemented as
a program product for use with a computer system. The pro-
gram(s) of the program product define functions of the
embodiments (including the methods described herein) and
can be contained on a variety of computer-readable storage
media. [llustrative computer-readable storage media include,
but are not limited to: (i) non-writable storage media (e.g.,
read-only memory devices within a computer such as CD-
ROM disks readable by a CD-ROM drive, flash memory,
ROM chips or any type of solid-state non-volatile semicon-
ductor memory) on which information is permanently stored;

10

15

20

25

30

35

40

45

50

55

60

65

12

and (ii) writable storage media (e.g., floppy disks within a
diskette drive or hard-disk drive or any type of solid-state
random-access semiconductor memory) on which alterable
information is stored.

The invention has been described above with reference to
specific embodiments. Persons of ordinary skill in the art,
however, will understand that various modifications and
changes may be made thereto without departing from the
broader spirit and scope of the invention as set forth in the
appended claims. The foregoing description and drawings
are, accordingly, to be regarded in an illustrative rather than a
restrictive sense.

Therefore, the scope of embodiments of the present inven-
tion is set forth in the claims that follow.

What is claimed:

1. A method for generating a displacement map, the
method comprising:

receiving a normal map comprising one or more normal

vectors associated with a texture map;

processing the one or more normal vectors to a calculate

one or more depth difference vectors associated with the
texture map;
generating, via a processing unit, one or more rays associ-
ated with a first texel of the texture map, wherein each of
the one or more rays associated with the first texel
traverses one or more other texels of the texture map;

for each of the one or more rays associated with the first
texel, calculating relative depths of each of the one or
more other texels traversed by the ray based on each of
the depth difference vectors that correspond with the one
or more other texels traversed by the ray;

determining a displacement value associated with the first

texel based on the relative depths calculated for the one
or more rays; and

storing the displacement value in a displacement map.

2. The method of claim 1, further comprising:

generating one or more rays associated with a second texel

of the texture map, wherein each of the one or more rays
associated with the second texel traverses one or more
other texels of the texture map;

for each of the one or more rays associated with the second

texel, calculating relative depths of each of the one or
more other texels traversed by the ray based on each of
the depth difference vectors that correspond with the one
or more other texels traversed by the ray;

determining a second displacement value associated with

the second texel based on the relative depths calculated
for the one or more rays associated with the second texel;
and

storing the second displacement value in a displacement

map.

3. The method of claim 1, wherein the relative depth is the
difference between a height of each of the one or more other
texels traversed by the ray and a height of a starting point of
the ray.

4. The method of claim 1, wherein determining the dis-
placement value comprises calculating an average relative
depth of each of the one or more other texels traversed by the
one or more rays.

5. The method of claim 4, wherein determining the dis-
placement value further comprises offsetting the displace-
ment value by the average relative depth.

6. The method of claim 1, wherein endpoints of the one or
more rays surround the texel in a substantially uniform man-
ner.

7. The method of claim 1, wherein calculating the relative
depths of each of the one or more other texels traversed by the

US 9,153,209 B2

13

ray comprises integrating over the length of the ray based on
the one or more depth difference vectors corresponding to the
one or more texels traversed by the ray.

8. The method of claim 7, wherein the integrating is per-
formed in a polar coordinate system.

9. The method of claim 1, wherein the depth difference
vectors are stored in a depth difference map.

10. A non-transitory computer-readable storage medium
including instructions that, when executed by a processing
unit, cause the processing unit to generate a displacement
map, by performing the steps of:

receiving a normal map comprising one or more normal

vectors associated with a texture map;

processing the one or more normal vectors to a calculate

one or more depth difference vectors associated with the
texture map;

generating one or more rays associated with a first texel of

the texture map, wherein each of the one or more rays
associated with the first texel traverses one or more other
texels of the texture map;

for each of the one or more rays associated with the first

texel, calculating relative depths of each of the one or
more other texels traversed by the ray based on each of
the depth difference vectors that correspond with the one
or more other texels traversed by the ray;

determining a displacement value associated with the first

texel based on the relative depths calculated for the one
or more rays; and

storing the displacement value in a displacement map.

11. The non-transitory computer-readable storage medium
of claim 10, further comprising:

generating one or more rays associated with a second texel

of'the texture map, wherein each of the one or more rays
associated with the second texel traverses one or more
other texels of the texture map;

for each of the one or more rays associated with the second

texel, calculating relative depths of each of the one or
more other texels traversed by the ray based on each of
the depth difference vectors that correspond with the one
or more other texels traversed by the ray;

determining a second displacement value associated with

the second texel based on the relative depths calculated
for the one or more rays associated with the second texel;
and

storing the second displacement value in a displacement

map.

12. The non-transitory computer-readable storage medium
of claim 10, wherein the relative depth is the difference
between a height of each of the one or more other texels
traversed by the ray and a height of a starting point of the ray.

13. The non-transitory computer-readable storage medium
of claim 10, wherein determining the displacement value

20

25

30

35

40

45

14

comprises calculating an average relative depth of each of the
one or more other texels traversed by the one or more rays.

14. The non-transitory computer-readable storage medium
of claim 13, wherein determining the displacement value
further comprises offsetting the displacement value by the
average relative depth.

15. The non-transitory computer-readable storage medium
of claim 10, wherein endpoints of the one or more rays sur-
round the texel in a substantially uniform manner.

16. The non-transitory computer-readable storage medium
of'claim 10, wherein calculating the relative depths of each of
the one or more other texels traversed by the ray comprises
integrating over the length of the ray based on the one or more
depth difference vectors corresponding to the one or more
texels traversed by the ray.

17. The non-transitory computer-readable storage medium
of claim 16, wherein the integrating is performed in a polar
coordinate system.

18. The non-transitory computer-readable storage medium
of'claim 10, wherein the depth difference vectors are stored in
a depth difference map.

19. A computing device, comprising:

a memory; and

a central processing unit coupled to the memory, config-

ured to:

receive a normal map comprising one or more normal
vectors associated with a texture map;

process the one or more normal vectors to a calculate one
or more depth difference vectors associated with the
texture map;

generate one or more rays associated with a first texel of
the texture map, wherein each of the one or more rays
associated with the first texel traverses one or more
other texels of the texture map;

for each of the one or more rays associated with the first
texel, calculate relative depths of each of the one or
more othertexels traversed by the ray based on each of
the depth difference vectors that correspond with the
one or more other texels traversed by the ray;

determine a displacement value associated with the first
texel based on the relative depths calculated for the
one or more rays; and

store the displacement value in a displacement map.

20. The computing device of claim 19, wherein the central
processing unit is configured to calculate the relative depths
of each of the one or more other texels traversed by the ray
comprises integrating over the length of the ray based on the
one or more depth difference vectors corresponding to the one
or more texels traversed by the ray.

#* #* #* #* #*

